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We investigate the onset of Rayleigh-Be'nard convection in a horizontal porous layer 
with anisotropic permeability. The permeability is transversely isotropic, whereas 
the orientation of the longitudinal principal axes is arbitrary. This is sufficient to 
achieve qualitatively new flow patterns with a tilted plane of motion or tilted lateral 
cell walls. The critical Rayleigh number and wavenumber at  marginal stability are 
calculated. There are two different types of convection cells (rolls) : (i) the plane of 
motion is tilted, whereas the lateral cell walls are vertical; (ii) the plane of motion is 
vertical, whereas the lateral cell walls are tilted as well as curved. It turns out that 
type (i) occurs when the transverse permeability is larger than the longitudinal 
permeability, and for the converse case type (ii) is preferred. 

1. Introduction 
Rayleigh-Be'nard instability in a porous medium was first studied by Horton & 

Rogers (1945) and later by Lapwood (1948). They identified the important 
dimensionless group (the Rayleigh number) and determined its critical value at the 
onset of convection. 

Palm, Weber & Kvernvold (1972) performed an analytical study of the steady 
supercritical roll motion and the associated heat transfer. Their results were 
extended numerically to higher Rayleigh numbers by Straus (1974), who also 
investigated the stability of finite-amplitude convection rolls. 

In isotropic porous layers of infinite lateral extent, the preferred motion at the 
onset of convection is in the form of rolls with square cross-sections. In anisotropic 
layers this is usually not true. By adopting the physical arguments given by Busse 
(1981, p. 104) we may predict some of the effects of anisotropy at the onset of 
convection, provided that the principal axes of the medium are directed along the 
coordinate axes : let us keep the vertical permeability and the vertical conductivity 
fixed, and vary the corresponding horizontal quantities. Then an increased horizontal 
permeability will promote the horizontal motion. This increases the preferred cell 
width and reduces the critical Rayleigh number. An increased horizontal con- 
ductivity will speed up the decay of the local buoyancy force. This increases the 
preferred cell width and increases the critical Rayleigh number. Reducing the 
horizontal permeability or conductivity will lead to the opposite effects. 

Castinel & Combarnous (1974) performed the first study of the onset of convection 
in a horizontal layer with anisotropic permeability, and their work was extended by 
Epherre (1975) to porous layers with anisotropic thermal conductivity. The results 
in these papers fully conform to the physical arguments given above. 
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Kvernvold & Tyvand (1979) investigated the supercritical roll motion, its 
stability and the associated heat transfer. They showed that even a three- 
dimensional anisotropy does not lead to  any new mathematical difficulties compared 
with isotropy. This is true only as long as one of the principal axes is vertical. This 
requirement has been maintained in all published work in this field, see the review 
article by McKibbin (1984) as well as McKibbin (1986) and Nilsen & Storesletten 
(1990). However, in the present work we will study media where none of the principal 
axes is vertical. 

The present paper is concerned with free convection in an horizontal porous layer 
with anisotropic permeability. The permeability is transversely isotropic, whereas 
the orientation of the longitudinal principal axis is arbitrary. For simplicity our 
analysis is restricted to full isotropy in thermal conductivity. This is sufficient to 
achieve qualitatively new flow patterns with a tilted plane of motion or tilted lateral 
cell walls. The mechanical anisotropy causes the tilt. A maximal, purely mechanical 
tilt angle can be determined directly from Darcy's law. We shall see that the thermal 
isotropy may reduce the tilt significantly. So if the tilt can be classified as thermo- 
mechanical, it is always smaller than the corresponding mechanical tilt. 

2. Mathematical formulation 
We consider a fluid-saturated porous layer which is bounded above-and below by 

two infinite and impermeable horizontal planes. The upper and lower boundaries are 
separated by a distance h and are at constant temperatures To and To+ AT, 
respectively. Here the characteristic temperature difference AT is positive, which 
means that the layer is heated from below. 

The permeability is transversely isotropic, whereas the longitudinal principal axis 
(with unit vector i') makes an arbitrary angle with the vertical direction. This means 
that the permeability perpendicular to this tilted principal axis is isotropic. Let K,, 
and K ,  denote the longitudinal and transverse components of the permeability 
tensor K* 

Herej' and k' are unit vectors along the transverse principal axes. A Cartesian frame 
of reference is chosen, with x- and y-axes a t  the lower boundary, where the x-axis is 
aligned along the horizontal projection of 1. The z-axis is directed opposite to 
gravity. The unit vectors in the x-, y- and z-directions are denoted by i, j and k. The 
anisotropy parameter 6 = K,/KII is introduced. We define the dimensionless inverse 
permeability tensor M by the following relation : 

M.K* = K,E,  ( 2 )  
where E is the unit tensor. From this definition we have the expression 

M = +JJ + k'k' 

= M,, ii+M,,(ik+ki)+M,, kk+jj ,  (3) 

M,, = gcos2,8+sin2P, (4) 
M,, = +( E - 1 ) sin 2p, (5) 

M,, = cos2p+gsin2,13. (6) 
Here p is the angle between the longitudinal direction and the horizontal plane, i.e. 
the angle between the vectors i and i'. 

where the tensor components are given by 
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The linearized version of the dimensionless governing equations, according to  the 
Boussinesq approximation, is given by 

M * v + U p - R B k =  0, (7) 
u*v = 0, (8) 

a0 
-- w = v20, 
at (9) 

see Kvernvold & Tyvand (1979), from whom the appropriate units of dimensionless 
quantities have been borrowed, with the only exception that K ,  replaces the vertical 
permeability. The velocity vector is u = ui+vj+wk, p is the pressure, t the time and 
0 is the deviation from the linear temperature distribution a t  pure conduction. R is 
the Rayleigh number defined by 

KV 

where g is the gravitational acceleration, y is the coefficient of thermal volume 
expansion, K the thermal diffusivity of the saturated porous medium and v the 
kinematic viscosity of the saturating fluid. 

By standard manipulations we eliminate the pressure and the horizontal velocity 
components from the governing equations (7) and (8). Then we eliminate the vertical 
velocity from the heat equation (9), and end up with the following equation for the 
perturbation temperature : 

"]]("B ) (;: ;;) a 2  
M a 3 ~ + 6 - + M , , - - w l 3 -  --v20 = R  -+MI, -  . (11) [ a2 aY2  a2 a22 axaZ at 

Impermeable and perfectly heat-conducting boundaries require that 

w = 0 = 0  at z = O  and z = 1 .  (12) 
By the heat equation (9) these boundary conditions are expressed by temperature 
alone : 

8 = - = 0  at x = O  and z = 1 .  (13) 
a2e 

a22 

3. Marginal stability and steady convection rolls 
At the onset of convection the preferred flow cells tend to  arrange themselves such 

that the tangential permeability along the streamlines is as large as possible. When 
( < 1 it is clear that  motion in the y-direction should be avoided, as its permeability 
is minimal. Thus we expect convection cells in the (x,z)-plane, independent of y. 
When 6 > 1 we have maximum permeability in the y-direction. This indicates that  
the preferred motion is independent of x. 

These physical arguments suggest that  the preferred flow patterns at the onset of 
convection are independent of x or y depending respectively on whether 6 > 1 or 
6 < 1. In  Appendix A this is confirmed numerically by showing that the Rayleigh 
number in both cases is a local minimum. 

3.1. Case I :  ( > 1 
I n  this case /3 denotes the angle between the x-axis and the direction with minimal 
permeability. The solution is assumed independent of x, so there are only even orders 
of the spatial derivatives. Then the problem is easy to solve analytically, as the 
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preferred mode consists of a single Fourier component vertically. As the horizontal 
pressure gradient is assumed zero, the x-component of Darcy's law (7)  reduces to the 
relation : 

This velocity ratio being constant means that the motion occurs in tilted planes 
which make an angle a with the vertical direction. (A simple mental image of this 
flow pattern is an array of music discs on a shelf, which are tilted due to  insufficient 
support.) The tilt angle is given by 

a tends to zero if t+ 1 or if p+O or 90'. In the limit [+ co we have tan a = 
-tan p, which means that there is no motion in the longitudinal direction. For E fixed, 
the plane of motion obtains its maximum tilt when 

t a n p  = (16) 

and the corresponding maximum value is 

For example, in the case 6 = 2, IaIrna, = 19.47" is obtained at p = 54.73'. 
The tilt angle a is purely mechanically determined, as i t  is derived from a 

component of Darcy's law without any buoyancy terms. It will hereinafter be termed 
'the mechanical tilt angle '. As a is completely decoupled from thermal effects, (15) 
is obviously not restricted to just thermally driven flows : Tyvand (1986) found the 
same formula as (15) for the tilt angle of free-surface flow cells in a porous medium, 
with the same type of anisotropy as assumed in the present paper. The mechanical 
tilt occurs because mechanical forcing of a flow in the vertical direction will generate 
a passive flow in the x-direction, due to the oblique anisotropy. 

From (11)  the governing equation in the absence of x-dependence will be 

The preferred mode of disturbance which satisfies the boundary conditions is given by 

sin nz. (19) 6 = e imyfu t  

The boundary-value problem defined by (13) and (18) is easily shown to be self- 
adjoint. Then u is real and marginal stability is defined by c = 0. Substituting (19) 
into (18) gives the Rayleigh number a t  marginal stability as a function of the 
wavenumber m : 

R = (yM;,1 m2 + I?) (1  + n2/m2) .  (20) 

Onset of convection in a horizontally unbounded layer occurs a t  the critical Rayleigh 
number 
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which is defined by minimizing (20) with respect to m. The corresponding (critical) 
value of m is defined by 

From (21) it  follows that R, +4x2 as t+ 1.  For 5 fixed, R, obtains its minimum value 
4n2 when p = 0 and its maximum value n2(1 +ti), for p = in. 

Finally, we note that the horizontal pressure gradient is zero along the plane 
z = 3. Thus the horizontal flow component here is not forced horizontally, but is a 
result of vertical forcing acting through the oblique anisotropy. 

m, = n(cos2p+g-1sin2~)t. (22) 

3.2. Case II: 0 < 6 < 1 

I n  this case p denotes the angle between the x-axis and the direction with maximal 
permeability. When 6 < 1 it turns out that the preferred mode of solution is 
independent of y. But in order to demonstrate this numerically (see Appendix A), we 
also include the y-dependence, and consider a solution of the general form 

,g = ~ ( ~ 1  ei(lcs+mu)+at (23) 

(24) 

where the boundary conditions (13) imply that 

Z(0) = Z”(0)  = Z(1) = Z”(1) = 0. 

The solution (23) substituted into (1  1 )  generates a fourth-order ordinary differential 
equation with constant coefficients. Its general solution is 

Z(z) = A ,  eriZ + A ,  erZr + A ,  er3* +A,  er4z, (25) 

where r,, r,, r ,  and r4 are complex roots of the fourth-degree polynomial 

(-M,, k2-f$2+M11rz-2M13ikr) (u-k2-m2+r2)+R(k2+M1,m2) = 0. (26) 

The constants A, ,  A,, A ,  and A ,  satisfy the boundary conditions (24), which leads to 
a linear homogeneous system of algebraic equations. Non-trivial solutions imply that 
the determinant of the coefficient matrix is zero : 

In Appendix B it is shown that the growth rate u = 0 a t  marginal stability. I n  order 
to find the critical Rayleigh number R, we then put u = 0 in (26). Given the 
parameters 6 ,  p and the wavenumbers k, m, (26) and (27) represent an eigenvalue 
problem. The eigenvalues are the Rayleigh numbers : 

R, < R, -= R ,  < ..., 

where the critical Rayleigh number is defined by 

R, = min R,(& p, k, m),  k 2 0,  m 2 0. (28) 

On the basis of the physical arguments given at  the beginning of this section, it is 
expected that R, is obtained a t  m = 0, which means that the steady solutions at 
convection onset are independent of y. This hypothesis is confirmed numerically in 
Appendix A. 

The eigenvalue problem (26) and (27) is solved numerically for the case r~ = 
m = 0. Table 1 shows the computed values of R, for various values of the anisotropy 
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FIGURE 1. The critical Rayleigh number as a function of B for various values pf 6.  

k . . .  
P (deg.1 

Q 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0.125 0.25Q 0.375 0.500 0.625 0.750 

18.082 22.207 
17.489 21.956 
16.571 21.463 
16.215 21.143 
16.401 21.131 
16.848 21.346 
17.335 21.653 
17.737 21.940 
17.994 22.137 
18.082 28.207 

TABLE 1. The compi 

25.658 
25.ii35 
25.268 
25.053 
25.000 
25.100 
25.282 
25.472 
25.609 
25.658 

ited values 

28.762 31.643 
28.701 31.615 
28.561 31.648 
28.434 3 1.483 
28.385 3 1.452 
28.427 3 1.466 
28.529 31.516 
28.643 31.577 
28.730 31.625 
28.762 31.643 

of R, for various values 

34.367 
34.358 
34.430 
34.303 
34.289 
34.292 
34.312 
34.337 
34.358 
34.367 

of 5 and p 

0.875 

36.979 
36.968 
36.962 
36.956 
36.952 
36.952 
36.957 
36.963 
36.968 
36.970 

ratio (and the angle p, Figure 1 shows the results of table 1 graphically. For given ( the 
critical Rayleigh numbers are equal for the cases p = 0 and p = 90°, which is known 
from Kvernvold & Tyvand (1979). Moreover, R, depends on the angle /3, and for each 
6 there exists an angle /3, giving a minimum critical Rayleigh number R,. Table 2 
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FIGURE 2. Computed streamlines at ,9 = 40.1' for the cases (a) = 0.125, (b )  0.25, 
and ( d )  0.75. 

0 .50 

E 0.125 0.250 0.375 0.500 0.625 0.750 0.875 0.990 

km 2.83 3.00 3.07 3.10 3.12 3.14 3.14 3.14158 
R m  16.214 21.101 24.977 28.385 31.451 34.288 36.952 39.2807 

TABLE 2. The computed values of b,,,, k, and R ,  for various values of 6 

b,,, (deg.) 30.7 35.2 38.1 39.9 41.4 43.4 44.0 44.9 

shows Pm, R, and the corresponding wavenumber k,. We observe that p, + 45" as 
E +  1 (E < 1 ) .  A further look a t  table 1 confirms that the numbers are almost 
symmetric about p = 45" when 5 is close to one, but develops an asymmetry when 
6 is reduced. However, the variation of R, with p when E is fixed is rather small; of 
order 10% when the variation of the directional permeability covers an order of 
magnitude. 

The computed streamlines are displayed in figure 2 for ,I3 = 40.1" for the cases E = 
0.125, 0.25, 0.50 and 0.75. A stream function has been defined in order to construct 
these curves. There is a constant increment in the stream function between two 
neighbouring streamlines. 

A preferred convection cell a t  the onset of convection will try to arrange itself so 
that the dominating parts of the flow take place along streamlines with as large a 
tangential permeability as possible. This may be achieved in two different ways : ( i )  
Selection of the preferred type of motion. When 6 < 1 we know that this implies that  
the motion is independent of y. (ii) Concentration of the flow near the cell boundaries. 

In  a convection cell with tilt, the flow near the stagnation point in the core follows 
approximately elliptical streamlines. A relatively large portion of these ellipses have 
a small tangential permeability. Near the boundaries, however, a much smaller 
portion of each streamline experiences a small tangential permeability. Most of these 
outer streamlines have relatively large tangential permeability, and are thus 
energetically preferable when 6 is small. For /3 fixed, we may then expect the flow to 
be more and more concentrated near the cell borders as decreases. This is 
demonstrated in figure 2. Mathematically this is possible because the preferred 
eigenfunction is no longer purely sinusoidal (as in case I) but tends to a more 
rectangular shape. 
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Stronger anisotropy in case I1 leads to a stronger concentration of the flow along 
the borders of the convection cells. This is the quantitatively dominating effect of 
oblique anisotropy, which is of genuinely thermo-mechanical origin. The tilt itself is 
of mechanical origin, and can never be enhanced by thermal effects. 

We have shown numerically that for 6 and p fixed, the ratio u / w  is independent 
of the x-coordinate a t  z = $. This means that all streamlines as well as the lateral cell 
walls have the same tilt angle at the midplane x = !j. Table 3 shows the ratio u/w and 
the tilt angle # a t  z = $ for various values of E ,  when /3 = 40.1'. Here # is defined as 
the angle between the streamlines a t  x = $ and the vertical direction. The fourth line 
in this table shows the mechanical tilt angle a for comparison. 

It is obvious that the x-derivative of the pressure is zero at the stagnation points 
a t  the boundaries z = 0 and z = 1. This fact alone does not say anything about the 
tilt, as u = w = 0 there. However, it is plausible that this horizontal component of 
the pressure gradient tends to zero more rapidly than the velocity components as we 
approach the stagnation points along the tilt lines (cell boundaries). We assume that 
this is true. If so, i t  implies that the tilt angle is equal to a at the stagnation points 
a t  the top and bottom of the layer. This conjecture is hard to prove numerically, but 
it is not in conflict with the results we have found. 

Figure 2 indicates that the tilt lines are curved in S shapes. The reason is that the 
tilt is reduced by thermal effects. These effects are strongest in the middle of the 
layer. This is because the flow is primarily pressure driven near the boundaries, while 
it is primarily buoyancy driven near the middle of the layer. 

The tilt lines will achieve maximal curvature when 6 is roughly about 0.2. There 
are two reasons why the curvature of the tilt lines decreases significantly when 6 is 
reduced below 0.1 : the difference between # and a is reduced, as both of them tend 
to their common limit value 90"-/3; and the tilt lines are stretched as the average 
tilt increases. 

In the present case of purely mechanical anisotropy, the curvature of the tilt lines 
is hard to visualize clearly. The cases 5 = 0.125 and 0.25 in figure 2 are both close to 
the overall maximum curvature. However, L. Storesletten, in work currently 
underway, finds a much stronger curvature of tilt lines in his corresponding 
instability problem where anisotropy in thermal conductivity replaces the present 
anisotropy in permeability. His work also confirms our present conjecture that the 
tilt is purely mechanical a t  the boundaries. 

Let us keep /3 fixed and vary 6. We start with 6 = 1 and reduce it successively down 
to zero. A plausible hypothesis is that the preferred cell width decreases 
monotonically with 6. This may only be true if we define the physical cell width ( A )  
as the mean distance between two neighbouring cell walls, perpendicularly to the tilt 
lines. The trouble is that the tilt angle varies, so there are several ways of defining 
the physical cell width. In  table 4 we show the maximum and minimum values of all 
possible choices of physical cell width. They are defined in the following way: 

- = l = h ,  2n h 
k, cos# cosa 

The left-hand side here is the spatial period of a disturbance, along the x-axis. Table 
4 shows that the average physical cell width will usually decrease with decreasing 6. 
The physical cell width has a slight tendency to  increase with decreasing 6 when we 
are close to  isotropy. 

When is not too small, the tilt lines will turn more rapidly with decreasing ( than 
the physical cell width will shrink, so that the critical value of k decreases with 
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5 0.125 0.25 0.375 0.50 0.625 0.75 0.875 

U I W  0.6563 0.4697 0.3399 0.2416 0.1636 0.0997 0.0459 
4 (deg.) 33.28 25.16 18.77 13.58 9.29 5.69 2.63 
a (deg.) 41.46 33.36 25.89 19.20 13.32 8.21 3.80 

TABLE 3. The computed values of u /w  and $ at z = for various values of 5, when /3 = 40.1". 
The angle a (given by (15)) is included for comparison 

E 0.125 0.25 0.375 0.50 0.625 0.75 0.875 0.99 

k c  3.3560 3.1791 3.1229 3.1061 3.1048 3.1129 3.1259 3.1403 
A, 1.5652 1.7889 1.9050 1.9663 1.9972 2.0084 2.0079 2.0008 
A, 1.4031 1.6508 1.8100 1.9133 1.9693 1.9977 2.0056 2.0008 

TABLE 4. Physical cell width represented by A, and A,, as defined in (29). 6 is varied and 
/3 = 40.1". The critical wavenumber k, is also included 

decreasing 6. However, this tendency stops when $ and a are sufficiently close to 
90°-p. From then on, the critical value of k will increase monotonically when 6 is 
reduced further. 

4. Summary and conclusions 
The present work is the first study of Rayleigh-Be'nard convection in an 

anisotropic porous medium with oblique principal axes. The analysis is restricted to 
transversely isotropic media with isotropic thermal conductivity. 

Qualitatively new flow patterns occur a t  the onset of convection. If the transverse 
permeability is larger than the longitudinal permeability, the planes of motion are 
tilted, but the cell walls are vertical as usual. On the other hand, if the longitudinal 
permeability is the larger one, the flow occurs in vertical planes, but the cell walls are 
tilted. 'The preference for these different patterns is explained as a preference for flow 
directions with as small a tangential permeability as possible. This preference also 
gives rise to  a tendency of concentration of the flow along the cell boundaries when 
the anisotropy increases, in the case when the cell walls are tilted. 

The tilt is primarily of mechanical origin, because a vertical forcing due to 
buoyancy will generate a flow along an oblique principal axis. This flow must have 
a horizontal component, which causes the tilt. A maximal tilt, which is purely 
mechanical, occurs when the motion takes place along tilted planes. When the cell 
walls are tilted, it seems that this maximal tilt will occur at the upper and lower 
boundaries. I n  the rest of the layer the tilt is reduced owing to  thermal effects, so that  
the tilted cell walls will be curved. The thermally induced reduction of the tilt is 
strongest in the middle of the layer. 

When the direction of the longitudinal axis is fixed, the critical cell width would 
be expected to decrease with decreasing ratio between transverse and longitudinal 
permeability. This will be true only if the cell width is measured perpendicularly to 
the tilt curves. 

The present results have applications in insulation techniques, as described by 
Kvernvold & Tyvand (1979). The case 0 < ( < 1 may be interpreted as a medium 
composed of parallel fibres. Our results show that there is nothing to be gained by an 
oblique orientation of the fibres, since the critical Rayleigh number is always reduced 

FLY 228 13 
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compared with a perpendicular or parallel orientation of fibres us. boundaries. The 
case 6 > 1 may be interpreted as a medium composed of perforated parallel plates : 
our work confirms the plausible conjecture that thc maximal Rayleigh number (i.e. 
optimal insulating properties) is obtained when these perforated plates are 
horizontal. 

Appendix A 
For physical reasons, given in $3, it is expected that the solutions a t  convection 

onset are independent of x (k = 0) or y (m = 0) depending on whether 6 > 1 or 
< 1. This is confirmed numerically by showing that the critical Rayleigh number is 

a local minimum with respect to small variations in m when ( < 1, and with respect to 
small variations in k when ( > 1. The results are given in the tables below, for the 
cases = 0.25, 0.50, 2.00 and 4.00, with the angle /? = 30". The number of digits is 
chosen so that we are able to see all significant variations in R. From these tables we 
note that the Rayleigh number a t  marginal stability is not always a local minimum, 
if the wavenumber is sufficiently far from its preferred value. So our conclusion that 
the flow a t  the onset of convection is either independent of x or independent of y, is 
only valid in a layer of infinite horizontal extent,. Convection in a finite box must 
generally be assumed to be fully three-dimensional. 

The case ( = 0.25 and p = 30": 

m=O 
R = 23.7479 

2.25 22.2313 
2.50 2 1.4397 
2.75 21.1529 
3 .00 21.2390 
3.25 21.6148 
3.50 22.2252 
3.75 23.0338 
4.00 24.0 146 

k = 2.00 

The case 6 = 0.50 and p = 30": 

m=O 
R = 32.7444 

2.25 30.4335 
2.50 29.1370 
2.75 28.5399 
3.00 28.4529 
3.25 28.7564 
3.50 29.3721 
3.75 30.2469 
4.00 3 1.3436 

k = 2.00 

m = 0.01 
R = 23.7479 

22.2314 
2 1.4397 
21.1530 
2 1.2390 
21.6146 
22.2252 
23.0338 
24.0147 

m = 0.01 
R = 32.7443 

30.4335 
29.1370 
28.5400 
28.4530 
28.7565 
29.3722 
30.2470 
31.3437 

m = 0.10 
R = 23.7478 

22.2345 
21.4445 
21.1586 
2 1.2452 
21.6211 
22.2318 
23.0405 
24.0213 

m = 0.10 
R = 32.7343 

30.4311 
29.1389 
28.5443 
28.4588 
28.7632 
29.3795 
30.2546 
31.3516 
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The case 6 = 2.00 and p = 30': 

k = O  
m = 2.00 R = 50.0729 

2.25 46.1762 
2.50 43.8775 
2.75 42.6726 
3.00 42.258 1 
3.25 42.4427 
3.50 43.1009 
3.75 44.1475 
4.00 45.5229 

The case 6 = 4.00 and p = 30": 

k = O  
m = 2.00 R = 51.2922 

2.25 47.4889 
2.50 45.2946 
2.75 44.2050 
3.00 43.9170 
3.25 44.2390 
3.50 45.0455 
3.75 46.2514 
4.00 47.7972 

k = 0.01 
R = 50.0727 

46.1762 
43.8775 
42.6726 
42.2582 
42.4429 
43.1010 
44.1476 
45.5231 

k = 0.01 
It = 51.2923 

47.4890 
45.2947 
44.2052 
43.9171 
44.2391 
45.0457 
46.25 15 
47.7974 

k = 0.10 
R = 50.0606 

46.1747 
43.8818 
42.6802 
42.2677 
42.4535 
43.1 124 
44.1594 
45.5352 

k = 0.10 
R = 51.3042 

47.5042 
45.3113 
44.2222 
43.9342 
44.2560 
45.0623 
46.2679 
47.8 135 

Appendix B. A proof of the principle of exchange of stabilities (ri = 0) 
The solution of (18) a t  convection onset may be written 

1 ,3 = Re {Z(z)  ei(kZ+mU+qt) 

1 1  (B 1) = Re {Z*(z)  e-i(kZfmU+qit) 

where the asterisk denotes complex conjugate and ui the imaginary part of the 
growth rate. The boundary conditions (19) may be written 

= Z = Z * = O  a t  z = O , l .  
d2Z d2Z* 
dz2 dz2 

- 

The following notation is introduced : 

O = S l O d z .  0 (B 3) 

We have two alternative forms (B 1) of the solutions of (18). Both of the solutions are 
taken in full complex form and substituted into this equation. The two resulting 
cquations are multiplied by Z and Z*, respectively, and integrated over the layer. 
These equations are subtracted from each other. Partial integration and application 
of the boundary condition (B 2) finally produces the equation 

= i ~ ~ 1 3 ( l ~ l  dZ -lil d% ). (134) 
2- 1 2-0 

From this equation i t  is obvious that ui = 0. 
13-2 
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